×

三种常用边缘检测算法

前端技术网 前端技术网 发表于2024-01-02 21:06:06 浏览3837 评论0

抢沙发发表评论

一、边缘检测算法的基本原理有

增强,检测,定位,滤波。

边缘检测是属于图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

三种常用边缘检测算法

图像属性中的显著变化通常反映了属性的重要事件和变化。这些包括(i)深度上的不连续、(ii)表面方向不连续(iii)物质属性变化和(iv)场景照明变化。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。(v)特定场合的安全检查手段.

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

二、Canny边缘检测算法的步骤和理解

姓名:高强    学号:17011210057

【嵌牛导读】:本文主要介绍Canny图像边缘检测算法的步骤和对各个步骤的理解

三种常用边缘检测算法

【嵌牛鼻子】:边缘检测,Canny,步骤

【嵌牛提问】:canny边缘检测算法的步骤是怎样?

【嵌牛正文】:

1. Canny边缘检测算法的提出和指标

Canny算法是John Canny在1986年提出的,那年John Canny 28岁,该文章发表在PAMI顶级期刊上(1986.IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 8, 1986, pp 679-698 )。

Canny算子与Marr(LoG)边缘检测方法类似(Marr大爷号称计算机视觉之父),也属于是先平滑后求导数的方法。John Canny研究了最优边缘检测方法所需的特性,给出了评价边缘检测性能优劣的三个指标:

(1)好的信噪比,即将非边缘点判定为边缘点的概率要低,将边缘点判为非边缘点的概率要低;

(2)高的定位性能,即检测出的边缘点要尽可能在实际边缘的中心;

(3)对单一边缘仅有唯一响应,即单个边缘产生多个响应的概率要低,并且虚假响应边缘应该得到最大抑制。

用一句话说,就是希望在提高对景物边缘的敏感性的同时,可以抑制噪声的方法才是好的边缘提取方法。

2.  Canny边缘检测算法的步骤:

(1)图像高斯滤波进行降噪处理。

(2)用一阶偏导的有限差分计算梯度的幅值和方向。

(3)对梯度幅值进行非极大值抑制。

(4)用双阈值算法检测和连接边缘。

3.  Canny边缘检测算法的通俗理解

Canny算法的目的就是边缘检测,何为边缘?图象局部区域亮度变化显著的部分,对于灰度图像来说,也就是灰度值有一个明显变化,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。那么怎么表征这种灰度值的变化呢?这里想到的就是导数微分,导数就是表征变化率的,但是数字图像都是离散的,也就是导数肯定会用差分来代替。也就是具体算法中的步骤2,用相邻像素的差分来计算梯度的大小和方向。但是在真实的图像中,一般会有噪声,噪声会影响梯度的计算,所以步骤1要先滤波。理论上将图像梯度幅值的元素值越大,说明图像中该点的梯度值越大,但这不能说明该点就是边缘。在Canny算法中,步骤3的非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点的局部最大值,沿着梯度方向,比较它前面和后面的梯度值,若梯度值局部最大则有可能为边缘像素,进行保留,否则就进行抑制。步骤4是一个典型算法,有时候我们并不能一刀切,也就是超过阈值的都是边缘点,而是设两个阈值,希望在高阈值和低阈值之间的点也可能是边缘点,而且这些点最好在高阈值的附近,也就是说这些中间阈值的点是高阈值边缘点的一种延伸。所以步骤4用了双阈值来进行检测和连接边缘。双阈值有时也叫做滞后阈值。

三、canny边缘检测算法

Canny边缘检测算子是JohnF.Canny于1986年开发出来的一个多级边缘检测算法。更为重要的是Canny创立了边缘检测计算理论(Computationaltheoryofedgedetection)解释这项技术如何工作。

通常情况下边缘检测的目的是在保留原有图像属性的情况下,显著减少图像的数据规模。有多种算法可以进行边缘检测,虽然Canny算法年代久远,但可以说它是边缘检测的一种标准算法,而且仍在研究中广泛使用。

Canny的目标是找到一个最优的边缘检测算法,最优边缘检测的含义是:

1、最优检测:算法能够尽可能多地标识出图像中的实际边缘,漏检真实边缘的概率和误检非边缘的概率都尽可能小。

2、最优定位准则:检测到的边缘点的位置距离实际边缘点的位置最近,或者是由于噪声影响引起检测出的边缘偏离物体的真实边缘的程度最小。

3、检测点与边缘点一一对应:算子检测的边缘点与实际边缘点应该是一一对应。

为了满足这些要求Canny使用了变分法(calculusofvariations),这是一种寻找优化特定功能的函数的方法。最优检测使用四个指数函数项表示,但是它非常近似于高斯函数的一阶导数。

四、sobel边缘检测优缺点与canny算子的优缺点

边缘提取其实也是一种滤波,不同的算子有不同的提取效果。比较常用的方法有三种,Sobel算子,Laplacian算子,Canny算子。

Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel算子对边缘定位不是很准确,图像的边缘不止一个像素;当对精度要求不是很高时,是一种较为常用的边缘检测方法。

Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中。

Laplacian算子法对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。拉普拉斯高斯算子是一种二阶导数算子,将在边缘处产生一个陡峭的零交叉;

Laplacian算子是各向同性的,能对任何走向的界线和线条进行锐化,无方向性。这是拉普拉斯算子区别于其他算法的最大优点。

扩展资料:

边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。

这些包括(i)深度上的不连续、(ii)表面方向不连续、(iii)物质属性变化和(iv)场景照明变化。边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。

图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。有许多方法用于边缘检测,它们的绝大部分可以划分为两类:

基于查找一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大和最小值来检测边界,通常是将边界定位在梯度最大的方向。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

参考资料来源:百度百科-边缘检测

三种常用边缘检测算法的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于sobel边缘检测优缺点与canny算子的优缺点、三种常用边缘检测算法的信息别忘了在本站进行查找哦。