×

三角函数公式大全表格初中(三角函数公式大全表格初中数学)

前端技术网 前端技术网 发表于2024-01-18 16:57:08 浏览2806 评论0

抢沙发发表评论

一、三角函数全部表达式

正弦函数y=sinx余切函数y=cosx正切函数y=tanx余切函数y=cotx正割函数y=secx余割函数y=cscx当然还有反正弦函数反余弦函数反正切函数反余切函数要正确把握函数的区间.

三角函数公式大全?

三角函数公式大全表格初中(三角函数公式大全表格初中数学)

一、倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))

二、降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

三角函数公式大全表格初中(三角函数公式大全表格初中数学)

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

三、推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

四、两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

五、和差化积

1、sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

2、sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

3、cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

4、cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

六、积化和差

1、sinαsinβ=[cos(α-β)-cos(α+β)]/2

2、sinαcosβ=[sin(α+β)+sin(α-β)]/2

3、cosαsinβ=[sin(α+β)-sin(α-β)]/2

七、诱导公式

1、(-α)=-sinα、cos(-α)=cosα

2、tan(—a)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、sin(π/2+α)=cosα

3、3cos(π/2+α)=-sinα

4、(π-α)=sinα、cos(π-α)=-cosα

5、5tanA=sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

八、锐角三角函数公式

1、sinα=∠α的对边/斜边

2、α=∠α的邻边/斜边

3、tanα=∠α的对边/∠α的邻边

4、cotα=∠α的邻边/∠α

二、三角形函数九个公式

1.是的,三角形函数有九个公式。2.这九个公式分别是:正弦函数的定义、余弦函数的定义、正切函数的定义、余切函数的定义、正割函数的定义、余割函数的定义、正弦函数与余弦函数的关系、正切函数与余切函数的关系、正割函数与余割函数的关系。3.三角形函数的九个公式是数学中研究三角函数性质和关系的基础,通过这些公式可以推导出其他与三角函数相关的公式和性质,进一步扩展了三角函数的应用范围和研究领域。

三、三角函数公式大全

1.两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2.倍角公式

tan2A=2tanA/(1-tan^2A)

Sin2A=2SinA?CosA

Cos2A=Cos^2A--Sin^2A

=2Cos^2A—1

=1—2sin^2A

三倍角公式

sin3A=3sinA-4(sinA)^3;

cos3A=4(cosA)^3-3cosA

tan3a=tana?tan(π/3+a)?tan(π/3-a)

半角公式

sin(A/2)=√{(1--cosA)/2}

cos(A/2)=√{(1+cosA)/2}

tan(A/2)=√{(1--cosA)/(1+cosA)}

cot(A/2)=√{(1+cosA)/(1-cosA)}

tan(A/2)=(1--cosA)/sinA=sinA/(1+cosA)

3.和差化积公式

sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(π/2-a)=cos(a)

cos(π/2-a)=sin(a)

sin(π/2+a)=cos(a)

cos(π/2+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinA/cosA

万能公式

sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}

cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}

tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2}

其他非重点三角函数

csc(a)=1/sin(a)

sec(a)=1/cos(a)

双曲函数

sinh(a)=[e^a-e^(-a)]/2

cosh(a)=[e^a+e^(-a)]/2

tgh(a)=sinh(a)/cosh(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

拓展知识:

三角函数口诀

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。

中心记上数字1,连结顶点三角形。向下三角平方和,倒数关系是对角。

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小。

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变。

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用。

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范。

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围。

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。

四、初中三角函数比值及公式图文

正弦定理:设三角形的三边为abc,他们的对角分别为ABC,外接圆半径为r,则称关系式a/sinA=b/sinB=c/sinC为正弦定理.余弦定理:设三角形的三边为abc,他们的对角分别为ABC,则称关系式a^2=b^2+c^2-2bc*cosAb^2=c^2+a^2-2ac*cosBc^2=a^2+b^2-2ab*cosC

感谢您的阅读!希望本文对解决您关于三角函数公式大全表格初中和三角函数公式大全表格初中数学的问题有所帮助。如果您还有其他疑问,欢迎随时向我们提问。